400 research outputs found

    Data Analysis in Multimedia Quality Assessment: Revisiting the Statistical Tests

    Full text link
    Assessment of multimedia quality relies heavily on subjective assessment, and is typically done by human subjects in the form of preferences or continuous ratings. Such data is crucial for analysis of different multimedia processing algorithms as well as validation of objective (computational) methods for the said purpose. To that end, statistical testing provides a theoretical framework towards drawing meaningful inferences, and making well grounded conclusions and recommendations. While parametric tests (such as t test, ANOVA, and error estimates like confidence intervals) are popular and widely used in the community, there appears to be a certain degree of confusion in the application of such tests. Specifically, the assumption of normality and homogeneity of variance is often not well understood. Therefore, the main goal of this paper is to revisit them from a theoretical perspective and in the process provide useful insights into their practical implications. Experimental results on both simulated and real data are presented to support the arguments made. A software implementing the said recommendations is also made publicly available, in order to achieve the goal of reproducible research

    On the perceptual similarity of realistic looking tone mapped High Dynamic Range images

    Get PDF
    International audienceHigh Dynamic Range (HDR) images are usually displayed on conventional Low Dynamic Range (LDR) displays because of the limited availability of HDR displays. For the conversion of the large dynamic luminance range into the eight bit quantized values, parameterized Tone Mapping Operators (TMO) are applied. Human observers are able to optimize the parameters in order to get the highest Quality of Experience by judging the displayed LDR images on a realism scale. In the study presented in this paper, two TMOs with three parameters each were evaluated by observers in a subjective experiment. Although the chosen parameter settings vary largely, the chosen images appear to have the same QoE for the observers. In order to assess this similarity objectively, three commonly used image quality measurement algorithms were applied. Their agreement with the preference of the observers was analyzed and it was found that the Visual Difference Predictor (VDP) outperforms the Structural Similarity Index and the Root Mean Square Error. A threshold value for VDP is derived that indicates when two LDR images appear to have the same Quality of Experience

    A robust image watermarking technique based on quantization noise visibility thresholds

    Get PDF
    International audienceA tremendous amount of digital multimedia data is broadcasted daily over the internet. Since digital data can be very quickly and easily duplicated, intellectual property right protection techniques have become important and first appeared about fifty years ago (see [I.J. Cox, M.L. Miller, The First 50 Years of Electronic Watermarking, EURASIP J. Appl. Signal Process. 2 (2002) 126-132. [52]] for an extended review). Digital watermarking was born. Since its inception, many watermarking techniques have appeared, in all possible transformed spaces. However, an important lack in watermarking literature concerns the human visual system models. Several human visual system (HVS) model based watermarking techniques were designed in the late 1990's. Due to the weak robustness results, especially concerning geometrical distortions, the interest in such studies has reduced. In this paper, we intend to take advantage of recent advances in HVS models and watermarking techniques to revisit this issue. We will demonstrate that it is possible to resist too many attacks, including geometrical distortions, in HVS based watermarking algorithms. The perceptual model used here takes into account advanced features of the HVS identified from psychophysics experiments conducted in our laboratory. This model has been successfully applied in quality assessment and image coding schemes M. Carnec, P. Le Callet, D. Barba, An image quality assessment method based on perception of structural information, IEEE Internat. Conf. Image Process. 3 (2003) 185-188, N. Bekkat, A. Saadane, D. Barba, Masking effects in the quality assessment of coded images, in: SPIE Human Vision and Electronic Imaging V, 3959 (2000) 211-219. In this paper the human visual system model is used to create a perceptual mask in order to optimize the watermark strength. The optimal watermark obtained satisfies both invisibility and robustness requirements. Contrary to most watermarking schemes using advanced perceptual masks, in order to best thwart the de-synchronization problem induced by geometrical distortions, we propose here a Fourier domain embedding and detection technique optimizing the amplitude of the watermark. Finally, the robustness of the scheme obtained is assessed against all attacks provided by the Stirmark benchmark. This work proposes a new digital rights management technique using an advanced human visual system model that is able to resist various kind of attacks including many geometrical distortions

    Investigating Epipolar Plane Image Representations for Objective Quality Evaluation of Light Field Images

    Get PDF
    International audienceWith the ongoing advances in Light Field(LF) technology, research in LF acquisition, compression, processing has gained momentum. This increased the need for objective quality evaluation of LF content. Many processing algorithms are still optimized against peak signal to noise ratio(PSNR). Lately, several attempts have been made to improve objective quality evaluation such as extending 2D metrics to 4D LF domain. However, there is still a great room for improvement. In this paper, we experiment with existing 2D image quality metrics on the Epipolar Plane Image representations of LF content to reveal characteristics of LF related distortions. We discuss the challenges and suggest possible directions towards a LF image quality evaluation on EPI representations

    Predicting visual fixations on video based on low-level visual features

    Get PDF
    AbstractTo what extent can a computational model of the bottom–up visual attention predict what an observer is looking at? What is the contribution of the low-level visual features in the attention deployment? To answer these questions, a new spatio-temporal computational model is proposed. This model incorporates several visual features; therefore, a fusion algorithm is required to combine the different saliency maps (achromatic, chromatic and temporal). To quantitatively assess the model performances, eye movements were recorded while naive observers viewed natural dynamic scenes. Four completing metrics have been used. In addition, predictions from the proposed model are compared to the predictions from a state of the art model [Itti’s model (Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 1254–1259)] and from three non-biologically plausible models (uniform, flicker and centered models). Regardless of the metric used, the proposed model shows significant improvement over the selected benchmarking models (except the centered model). Conclusions are drawn regarding both the influence of low-level visual features over time and the central bias in an eye tracking experiment

    Construction d'images miniatures avec recadrage automatique basée sur un modèle perceptuel bio-inspiré

    Get PDF
    Cet article présente un procédé de zoom automatique, destiné à adapter la taille des images pour des dispositifs d'affichage à écran de petite taille (Téléphone mobile...). L'adaptation de la taille des images s'effectue par la sélection des zones les plus intéressantes visuellement. Ces dernières sont déterminées via une approche computationnelle de modélisation de l'attention visuelle. Tout d'abord, les performances de modélisation de l'attention visuelle sont d´eduites par comparaison avec une v´erit´e terrain issue de tests oculom´etrique. Enfin, les performances qualitatives du syst`eme de vision complet, mod`ele d'attention visuelle et proc´ed´e de miniaturisation, sont pr´esent´ees

    Video Quality Model based on a spatiotemporal features extraction for H.264-coded HDTV sequences

    Get PDF
    International audienceAs a contribution to the design of an objective quality metric in the specific context of High Definition Television (HDTV), this paper proposes a video quality evaluation model. A spatio-temporal segmentation of sequences provide features used with the bitrate to predict the subjective evaluation of the H.264-distorted sequences. In addition, subjective tests have been conducted to provide the mean observer's quality appreciation and assess the model against reality. Existing video quality algorithms have been compared to our model. They are outperformed on every performance criterion

    Influence of motion on contrast perception: supra-threshold spatio-velocity CSF measurements

    Get PDF
    International audienceIn this paper, a supra-threshold spatio-velocity CSF experiment is described. It consists in a contrast matching task with a methods of limits procedure. Results enable the determination of contrast perception functions which give, for given spatial and temporal frequencies, the perceived contrast of a moving stimulus. These contrast perception functions are then used to construct supra-threshold spatio-velocity CSF. As for supra-threshold CSF in spatial domain, it can be observed that CSF shape changes from band-pass behaviour at threshold to low-pass behaviour at supra-threshold, along spatial frequencies. However, supra-threshold CSFs have a band-pass behaviour along temporal frequency has threshold one. This means that if spatial variations can be neglected above the visibility threshold, temporal ones are still of primary importance
    corecore